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The low frequency behaviour of dynamic loudspeaker drivers is well understood.
The pioneering work of A.N.Thiele and R.H.Small brought a new understanding
of enclosure design, particularly vented loudspeaker enclosure design. I have on
hand the �Loudspeakers in Vented Boxes� paper by A.N.Thiele published in the
IRE proceedings and have to admit that I �nd it hard to follow, principally
because it is built around the contruction of equivalent circuits to represent
driver behaviour. Being unfamiliar with the basic approach of that modelling
(it isn't covered in the paper) makes it di�cult to understand where there
various impedances stem from. The use of an equivalent circuit also obscures
the origins of particular terms in the governing equations. For that reason I
chose to construct an analysis that takes a di�erent, and I believe, more readily
understood approach.

Assumptions

All low frequency models of dynamic loudspeakers generally assume that the
driver operates in what is referred to as the piston operating range. This gener-
ally means that in this frequency range the driver cone behaves as a rigid body.
The reality is that real drivers are never rigid bodies and it is essentially impos-
sible to make a perfect piston but for low frequencies the rigid body assumption
holds true.

At higher frequencies vibrations travel transversally along the cone surface in
what is generally referred to as cone break up. The point at which cone break up
becomes a dominant factor in driver response generally occurs when the wave
length of the sound in air is comparable to or less than twice the cone diameter.
For an 8 inch driver this occurs at around 860Hz1. Similarly, for the e�ect of
the box on the response it is assumed that the wavelength of sound is large
compared with the physical dimensions of the enclosure, which is generally true
for the range of frequencies for which the box in�uences the driver response.

In this anlysis it is also assumed that the air mass loading on the cone (the mass
of air in contact with the cone) and the radiation resistance (energy transmit-
ted to air as sound waves) is lumped in with the model mass and mechanical
resistance terms.

1This follows from the relationship between speed of propagation of sound in air Vair,
wavelength λ and wave frequencyf , namely Vair = fλ

1



D K

M

F

x

Figure 1: mechanical model of loudspeaker

The Model

We start with the rigid body assumption and consider the mechanical compo-
nents responsible for the dynamic response. At its simplest level it is a mass-
spring-damper system, the cone and the voice supplying the moving mass, the
suspension (including the spider and ring surround) providing the sti�ness and
mechanical damping / resistance. This is illustrated in the lumped parameter
mechanical model in �gure 1.

Balancing the forces in this mechanical system we �nd that,

F = Kx+M
d2x

dt2
+D

dx

dt
(1)

where F is the force applied to the voice coil, x is the displacement of the cone,
K is the suspension sti�ness, M is the moving mass and D is the mechanical
damping or resistance. Now we de�ne the Laplace Transform of x(t) with zero
intial conditions as,

X (S) = L (x (t)) (2)

It can be shown that,

L
(
dx (t)

dt

)
= SX (S) (3)

or more generally,

L
(
dnx (t)

dtn

)
= SnX (S) (4)

This identity can then be used to transform our di�erential equation in the time
domain into a polynomial in S, the complex frequency domain,

F (S) =
(
MS2 +DS +K

)
X (S) (5)
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Figure 2: Excitation Circuit

This shorthand way of dealing with di�erential equations is common practice in
electrical engineering and makes analysis considerably easier than dealing with
Laplace transforms directly.

Now turning our attention to the electrical part of the the loudspeaker we can
represent the excitation circuit with the structure shown in �gure 2. From
Ohms law2 and noting that the complex impedance of an inductor3is SL it
follows that,

I (S) =
V (S)− Eb (S)

R+ SLe
(6)

where V is the voltage applied to the voice coil, R is the voice coil resistance,
Le is the voice coil leakage inductance and Eb is the back EMF induced in the
voice coil by the motion of the cone. From the Lorentz force law we know that
F is proportional to current giving

F (S) = KfI (S) = Kf
V (S)

R+ SLe
−Kf

Eb (S)

R+ SLe
(7)

where Kf is the constant of proportionality between force and current. From
Faradays law we know that the back EMF Eb is proportional to cone velocity
giving

Eb (S) = KgSX (S) (8)

where Kg is the constant of proptionality between back EMF and cone velocity.
Substituting equation 8 into 6 and re-arranging we �nd,

X (S)

V (S)
=

Kf

SKgKf + F (S)
X(S) (R+ SLe)

(9)

We also note that acoustic sound pressure is proportional to the acceleration of
the cone giving

Aspl (S) = KaS
2 (10)

2The voltage, v, required to create a current �ow of i through a resistor of resistance R
ohms is given by v = iR

3the complex impedance of an inductor follows from the di�erential equation governing its

operation, namely v = L di
dt

where v is the voltage across the inductor and i is the current

through it. Hence Z (S) = SL
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Figure 3: Dynamic Loudspeaker Block Diagram

whereKa is the constant of proportionality between acoustic sound pressure and
cone acceleration and Aspl is the sound pressure level. With these relationships
we can see that this electro-dynamic system is completely represented by the
block diagram of �gure 3.

Looking at the voice coil component in more detail, let us assume the magnetic
induction / �ux density in the pole air gap is B, that n turns of wire are within
the air gap carrying a current of i and the coil has a nominal diameter of D.
Then using the Lorentz force law we �nd,

F = ilB = inπDB (11)

from which we can deduce that,

Kf = nπDB (12)

From Faradays law we have,

Eb = n
dΦ

dt
(13)

where Φ is the �ux cut by a single turn of wire in the voice coil. Therefore the
change of �ux with a change of displacement is,

dΦ = πDBdx (14)

giving,

Eb = nπDB
dx

dt
(15)

From which it is clear that,

Kg = nπDB = Kf (16)
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Loudspeaker Displacement Response

From �gure 3 we see that the model is a negative feedback loop. Substituting
equation 5 into equation 9 and re-arranging gives the displacement response,

X (S)

V (S)
=

Kf

(R+ SLe) (MS2 +DS +K) +Kf
2S

(17)

To simplify treatment of the displacement reponse of the driver we shall ignore
the e�ect of the leakage inductance Le . This is of little consequence for the low
frequency analysis of driver behaviour.

X (S)

V (S)
=

Kf

MRS2 +
(
DR+Kf

2
)
S +KR

(18)

We can re-write this response in the normalised,

X (S)

V (S)
=

(
1

KfωsQe

)
ωs

2

S2 +
(

ωs

Qm
+ ωs

Qe

)
S + ωs

2
(19)

where,
ωs

Qm
= D

M

ωs

Qe
=

K2
f

RM

ωs
2 = K

M

We shall ellaborate on these terms later when discussing driver impedance. The
displacement response is a second order low pass response.

The displacement frequency response is obtained by substituting S=jω giving4,

X (ω)

V (ω)
=

(
1

KfωsQe

)
ωs

2

jω
(

ωs

Qm
+ ωs

Qe

)
+ ωs

2 − ω2
(20)

Loudspeaker Sound Pressure Response

The radiated sound pressure is proportional to acceleration. Referring again to
�gure 3 and equation 19 we see that,

Aspl (S)

V (S)
=

(
Kaωs

KfQe

)
S2

S2 +
(

ωs

Qm
+ ωs

Qe

)
S + ωs

2
(21)

We see the sound pressure response is a second order high pass response. The
sound pressure frequency response is obtained by substituting S=jω giving,

Aspl (ω)

V (ω)
=

(
Kaωs

KfQe

)
−ω2

jω
(

ωs

Qm
+ ωs

Qe

)
+ ωs

2 − ω2
(22)

4j is the imaginary number de�ned by the identity j =
√
−1. Physicists, Mathematicians

and mechanical Engineers use i to indicate the imaginary number but Electrical Engineers

use j to avoid confusing it with an electric current.
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Loudspeaker Impedance

From Ohms law,

Z (S) =
V (S)

I (S)
(23)

I (S) =
V (S)− Eb (S)

R+ SLe
(24)

Therefore,

Z (S) =
V (S)

V (S)− Eb (S)
(R+ SLe) =

1

1− Eb(S)
V (S)

(R+ SLe) (25)

Substituting equation 8 we �nd,

Z (S) =
1

1−KgS
X(S)
V (S)

(R+ SLe) (26)

Substituting the displacement response of equation 17 into the above we �nd,

Z (S) =
(R+ SLe)

(
MS2 +DS +K

)
+Kf

2S

(R+ SLe) (MS2 +DS +K)
(R+ SLe) (27)

Z (S) =
S3Le + S2

(
R+ LeD

M

)
+ S

(
RD
M + LeK

M +
Kf

2

M

)
+ RK

M

S2 + D
M S + K

M

(28)

To see how this translates into an equivalent electrical circuit, consider the
network in �gure 4. The impedance of this network5 is,

5the complex impedance of a capacitor follows from the di�erential equation governing its

operation, namely i = C dv
dt

where v is the voltage across the capacitor and i is the current

through it. Hence Z (S) = 1
SC

6



Z (S) = R+
1

1
SL + 1

r + SC
+ SLe (29)

Z (S) =
S3Le + S2

(
R+ Le

Cr

)
+ S

(
1
C + R

Cr + Le

LC

)
+ R

LC

S2 + S 1
Cr + 1

LC

(30)

Comparing equation 28 and equation 30 we can see that if we choose,

1

Cr
=
D

M
(31)

1

LC
=
K

M
(32)

the denominators will match. Matching the terms in the numerator we �nd that
we need, (

RD

M
+
LeK

M
+
Kf

2

M

)
=

(
1

C
+

R

Cr
+
Le

LC

)
(33)

From which it follows that,

Kf
2

M
=

1

C
(34)

The normalised form of a second order polynomial in S is,

S2 + S ωo

Q + ωo
2

We can produce a normalised form for the impedance if we introduce the terms
ωs as the resonant frequency

6 of the driver, Qm as the mechanical quality factor
for the driver, Qe as the electrical quality factor and ωe as the pole resulting
from the leakage inductance Le. Then we de�ne,

ωs

Qm
=

1

Cr
=
D

M
(35)

ωs

Qe
=

K2
f

RM
(36)

ωs
2 =

1

LC
=
K

M
(37)

ωe =
R

Le
(38)

Normalising our impedance function we �nd,

6Be aware that ωs is the angular resonant frequency with units of radians per second. This

relates to the Hertzian frequency through the relation ωs = 2πfs where fs is the resonant

frequency in Hz.
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Z (S) = R
S3
(

1
ωe

)
+ S2

(
1 + ωs

Qmωe

)
+ S

(
ωs

2

ωe
+ ωs

Qm
+ ωs

Qe

)
+ ωs

2

S2 + S
(

ωs

Qm

)
+ ωs

2
(39)

From equations 34 , 36 and 35 we can show that,

r = R
Qm

Qe
(40)

Re-arranging equation 36 gives,

C =
Qe

ωsR
(41)

Finally, substituting C above into equation 37 and re-arranging gives,

L =
R

ωsQe
(42)

If we Ignore the e�ect of Le, which is typically small at driver resonance, we
can simplify the imedance to,

Z (S) = R

S2 + S
(

ωs

Qe
+ ωs

Qm

)
+ ωs

2

S2 + S
(

ωs

Qm

)
+ ωs

2

 (43)

From which we see that at the resonant frequency the magnitude of the driver
impedance is at a maximum of,

|Z (jωs) | = Zmax = R
Qm +Qe

Qe
(44)

This relationship comes in handy for determining the box Q of an enclosure, a
parameter not readily predictable from theory.

Conjugate Load Matching

An important part of passive crossover design is the construction of a network
to equalise the impedance of a driver so that it presents a constant resistive load
to the crossover. Without equalisation the reactive driver impedance will result
in a combined �lter response that deviates from the desired response.

Consider the generalised equaliser of �gure 5.

The input impedance of this network is,

Zin =
1

1
R+Zl

+ 1
R+Zc

(45)

Zin =
R2 + ZlZc +R (Zl + Zc)

2R+ Zl + Zc
(46)
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where Zl is the complex impedance we wish to equalise and Zc is the compen-
sation impedance. We want Zin to be R from which it follows that for this to
be true then,

Zc =
R2

Zl
= R2Yl (47)

where Yl is the load admittance. To see how this translates into an equalisation
for the loudspeaker impedance, consider the network in �gure 6.

The impedance of this network is,

Zc =
1

1
SCe

+ 1
Rc

+ SLc + 1
SCc

(48)

Zc =
Rc + SLc + 1

SCc

SCe

(
Rc + SLc + 1

SCc

)
+ 1

(49)

From equations 30 and 47 we can see that,

R2Yl =
R2

SL + R2

r + SCR2

SLe

(
1
SL + 1

r + SC
)

+ 1
(50)
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Comparing the top lines of equation 49 with equation 50 we see that,

Rc =
R2

r
(51)

Lc = CR2 (52)

Cc =
L

R2
(53)

Comparing the bottom lines of equation 49 with equation 50 we see that,

Ce

Cc
=
Le

L
(54)

CeRc =
Le

r
(55)

CeLc = LeC (56)

This all holds true if,

Ce =
Le

R2
(57)

(58)

Summarising the results we have,
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Model impedance component values Conjugate load match component values

R

Le

L r C

R

Rc Ce

Lc

Cc

r = RQm

Qe
Rc = R2

r = R Qe

Qm

C = Qe

ωsR
Cc = L

R2 = 1
ωsQeR

L = R
ωsQe

Lc = CR2 = QeR
ωs

Ce = Le

R2

The Response of a Driver in a Sealed Box

Mounting a driver in a sealed box adds two extra components to the mechanical
model of �gure 1: an extra damping term, Db, and an extra sti�ness term,
Kb. These extra terms act in parallel with the corresponding driver terms so
in essence, a sealed box simply increases the driver suspension sti�ness and the
driver mechanical damping. Referring to equation 17 and 19 we can see that,

D

M
⇒ D

M
+
Db

M
=

ωs

Qm
+
ωb

Qb
(59)

and

K

M
⇒ K +Kb

M
= ωs

2

(
1 +

VAS

Vb

)
= ωb

2 (60)

The normalised form of the Kb term stems from the de�nition of VAS , the
volume equivalent sti�ness of the driver. By de�nition,
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Kb = K
VAS

Vb
(61)

Equation 60 shows that box raises the resonant frequency of the driver with the
new resonance becoming.

ωb = ωs

√
1 +

VAS

Vb
(62)

or put in another way, the box volume required to raise the resonance to ωb is,

Vb =
VAS(

ωb

ωs

)2
− 1

(63)

The new displacement and sound pressure responses are then,

X (S)

V (S)
=

(
1

KfωsQe

)
ωs

2

S2 +
(

ωs

Qm
+ ωs

Qe
+ ωb

Qb

)
S + ωb

2
(64)

and

Aspl (S)

V (S)
=

(
Kaωs

KfQe

)
S2

S2 +
(

ωs

Qm
+ ωs

Qe
+ ωb

Qb

)
S + ωb

2
(65)

We note that the box has no e�ect on the sensitivity of the response above res-
onance but the displacement response below resonance is reduced in magnitude

by the factor ωs
2

ωb
2 , by virtue of the extra sti�ness that the box provides.

The amount of extra damping that the enclosure provides is not readily pre-
dictable and will depend on the amount of �brous lining inside the cabinet and
no doubt, cabinet shape and volume. A reasonable estimate could be a box Q
of around 7, though anyone wanting to obtain the optimum alignment should
measure the impedance of the driver mounted in the box and determine Qb via
equation 44 and the manufacturer supplied Qm and Qb values.

For the sake of simplicity, if we assume that the box provides only added sti�ness
and no extra damping, then the net e�ect of the box is to raise the resonant
frequency, but in raising the resonant frequency we change the Qt because

7,

Aspl (S)

V (S)
=

(
Kaωs

KfQe

)
S2

S2 +

(
ωs

ωb
ωs

Qt

)
S + ωb

2

(66)

Hence,

Qinbox =
ωb

ωs
Qt (67)

Therefore to obtain an ideal Butterworth response with a given driver in a sealed
box, we need to increase the inbox Q to a value of 0.707 (the Q for a second order

7Qt is the total driver Q and is given by 1
Qt

= 1
Qm

+ 1
Qe
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Butterworth polynomial). As an example consider the driver whose parameters
are,

Fs 57
Qt 0.59
VAS 8.77 litres

We see that the driver resonance needs to be increased by the factor 0.707/0.59 =
1.2 times to 68 Hz. This implies we need a box volume of 8.77/(1.22 − 1) = 20
litres. In practise, because the box provides additional damping, a box volume of
20 litres will be too large and the overall Q in the box too low. The additional
box damping has the e�ect of making the driver Qt lower, hence requiring a
greater resonant frequency ratio.

The Response of a Driver in a Vented Box

7 shows a mechanical model of a loudspeaker in a vented enclosure. As with the
driver model, M is the cone moving mass, K the suspension sti�ness and D the
driver mechanical damping. The box volume acts as a spring with sti�ness Kb

and is coupled to a moving mass Mv : the mass of air in the vent. A damping
term associated with mechanical energy losses in the box is included (Db) and
is shown coupling to ground. A more complete model could be constructed
by adding an additional damping term that couples M to Mv but it greatly
increases the complexity of the algebra with not much improvement in model
reality, so I have deliberately chosen not to include it.

Balancing the forces in this dynamic system we �nd,

M
d2x

dt2
+D

dx

dt
+Kx+D

dx

dt
+ (x− xv)Kb = F (68)

Mv
d2xv
dt2

+Db
dxv
dt

+ (xv − x)Kb = 0 (69)

Transforming to the complex frequency domain we �nd,

F (S)

X (S)
= MS2 +DS + (K +Kb)−

Xv (S)

X (S)
Kb (70)

X (S)

Xv (S)
=
MvS

2 +DbS +Kb

Kb
(71)

Elimination Xv (S) we �nd,
F (S)
X(S) = MS2 +DS + (K +Kb)− Kb

2

MvS2+DbS+Kb

F (S)

X (S)
=
A4S

4 +A3S
3 +A2S

2 +A1S +A0

MvS2 +DbS +Kb
(72)

where,

A4 = MMv

A3 = MvDb +MvD
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Figure 7: Mechanical Model of a Driver in a Vented Box

A2 = MvK +MvKb +DDb +MKb

A1 = KbD +KDb +KbDb

A0 = KKb

Now substituting into equation 9 we �nd,

X (S)

V (S)
= Kf

MvS
2 +DbS +Kb

B5S5 +B4S4 +B3S3 +B2S2 +B1S +B0
(73)

where,

B5 = MMvLe

B4 = MMvR+MDbLe +MvDLe

B3 = MDbR+MvDR+MvKLe +MvKbLe +DDbLe +MKbLe +MvKf
2

B2 = MvKR+MvKbR+DDbR+MKbR+KbDLe+KDbLe+KbDbLe+DbKf
2

B1 = KbDR+KDbR+KbDbR+KbKf
2

B0 = KKbR

Or in a normalised form,

X (S)

V (S)
=

(
1

KfωsQe

)
ωs

2S2 + ωbωs
2

Qb
S + ωb

2ωs
2

N5S5 +N4S4 +N3S3 +N2S2 +N1S +N0
(74)

where,

N5 = 1
ωe
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N4 = 1 + ωb

Qbωe
+ ωs

Qmωe

N3 = ωb

Qb
+ ωs

Qm
+ ωs

2

ωe

(
1 + VAS

Vb

)
+ ωsωb

QmQbωe
+ ωb

2

ωe
+ ωs

Qe

N2 = ωs
2
(

1 + VAS

Vb

)
+ ωsωb

QmQb
+ ωb

2 + ωb
2ωs

Qmωe
+ ωs

2ωb

ωeQb

(
1 + VAS

Vb

)
+ ωbωs

QbQe

N1 = ωb
2ωs

Qm
+ ωs

2ωb

Qb

(
1 + VAS

Vb

)
+ ωb

2ωs

Qe

N0 = ωs
2ωb

2

ωe = R
Le

ωb

Qb
= Db

Mv

ωs

Qs
= D

M

ωb
2 = Kb

Mv

ωs
2 = K

M

If we ignore the e�ect of Le then the simpli�ed displace becomes,

X (S)

V (S)
=

(
1

KfωsQe

)
ωs

2S2 + ωbωs
2

Qb
S + ωb

2ωs
2

S4 +N3S3 +N2S2 +N1S +N0
(75)

where,

N3 = ωb

Qb
+ ωs

Qm

N2 = ωs
2
(

1 + VAS

Vb

)
+ ωsωb

QmQb
+ ωb

2 + ωbωs

QbQe

N1 = ωb
2ωs

Qm
+ ωs

2ωb

Qb

(
1 + VAS

Vb

)
+ ωb

2ωs

Qe

N0 = ωs
2ωb

2

The vent displacement response follows from,

Xv (S)

V (S)
=
X (S)

V (S)

Xv (S)

X (S)
(76)

Thus,

Xv (S)

V (S)
=

(
1

KfωsQe

)
ωb

2ωs
2

S4 +N3S3 +N2S2 +N1S +N0
(77)

The sound pressure response components of the driver and the vent are found
by multiplying each by KaS

2. The radiated sound pressure is the di�erence
between the two (remember that the vent is driven by the back side of the
driver). Therefore,

ASPL (S)

V (S)
=

(
Kaωs

KfQe

)
S4 + ωb

Qb
S3

S4 +N3S3 +N2S2 +N1S +N0
(78)

We see that the sound pressure response is a fourth order high pass response as
opposed to a second order high pass response for a sealed box enclosure. The
cuto� slope is therefore asymptotic to 24 dB per octave.
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To determine the driver impedance mounted in a vented box we substitute the
displacement response of equation 73 into the generalised impedance of equation
26 giving,

Z (S) = (R+ SLe)
B5S

5 +B4S
4 +B3S

3 +B2S
2 +B1S +B0

B5S5 +B4S4 +B8S3 +B7S2 +B6S +B0
(79)

where,

B8 = MDbR+MvDR+MvKLe +MvKbLe +DDbLe +MKbLe

B7 = MvKR+MvKbR+DDbR+MKbR+KbDLe +KDbLe +KbDbLe

B6 = KbDR+KDbR+KbDbR

or in normalised form,

Z (S) = (R+ SLe)
N5S

5 +N4S
4 +N3S

3 +N2S
2 +N1S +N0

N5S5 +N4S4 +N8S3 +N7S2 +N6S +N0
(80)

where,

N8 = ωb

Qb
+ ωs

Qm
+ ωs

2

ωe

(
1 + VAS

Vb

)
+ ωsωb

QmQbωe
+ ωb

2

ωe

N7 = ωs
2
(

1 + VAS

Vb

)
+ ωsωb

QmQb
+ ωb

2 + ωb
2ωs

Qmωe
+ ωs

2ωb

Qbωe

(
1 + VAS

Vb

)
N6 = ωb

2ωs

Qm
+ ωs

2ωb

Qb

(
1 + VAS

Vb

)
By measuring the impedance of the driver mounted in the prototype cabinet,
we can verify the box tuning and if not optimal, adjust it accordingly, usually
by altering the box frequency (by changing the length of the vent) and changing
the box Q (by adding or removing damping material in the form of box stu�ng).
In this way we can obtain the best possible performance from our system even
though we cannot accurately measure the frequency response itself (standing
waves colour any attempt for the home builder to accurately measure the real
bass response of the enclosure directly).

(81)

The Vent Length

A vent in a sealed box acts as a resonator whose resonance is controlled by
the sti�ness of the air spring and and mass of the moving air within the vent.
This general type of acoustic system is referred to as a Helmholtz resonator in
the literature. The theoretical sti�ness of the air spring is governed by the box
volume and the cross sectional area of the vent. Without going into the detail
of the derivation, it can be shown that,

lvent ≈ 23318

(
d2

Vbfb
2

)
(82)

where the length and diameter is measure in centimetres, the box frequency in
Hertz and the box volume in litres.

In practice the real length required to obtain the desired tuning is shorter than
the above due to end e�ects. For real vents there is an extra portion of moving
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mass extending out from either end of the vent. The length extension is approx-
imately 0.85d for �anged vent ends and 0.6d for un�anged ends. In a typical
box construction we have one �anged and one un�anged end so the length ex-
tension is in the order of 0.725d. Hence the actual cut length for the vent is
more typically,

lvent ≈ 23318

(
d2

Vbfb
2

)
− 0.725d (83)

though we should verify the box tuning by measuring the driver impedance. The
driver mounted in a vented box will display two resonances, the upper anti-phase
mode and the lower in-phase mode. The box frequency is approximately the
frequency at which the impedance is at a minimum between these two peaks.
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